IRVING INSTITUTE FOR

clinical and translational research

Biostatistics, Epidemiology & Research Design education initiatives

GETTING STARTED WITH SAS (PART 2)

COLUMBIA | MAILMAN SCHOOL

UNIVERSITY | of PUBLIC HEALTH

Christine Mauro, PhD April 19th, 2018

COLUMBIA UNIVERSITY OF PUBLIC HEALTH BIOSTATISTICS

Outline

- Application
- Brief Review
- Descriptive Statistics
- Visualizing Data
- Basic Hypothesis Testing

APPLICATION

Risk Factors Associated with Low Birthweight

• Lowbwt_ALL.csv

• The data on 189 births were collected at Baystate Medical Center, Springfield, Mass. during 1986. The dataset contains an indicator of low infant birth weight as a response and several risk factors associated with low birth weight. The actual birth weight is also included in the dataset.

• The dataset consists of the following 10 variables:

- low: indicator of birth weight less than 2.5kg
- age: mother's age in years
- lwt: mother's weight in pounds at last menstrual period
- race: mothers race ("white", "black", "other")
- smoke: smoking status during pregnancy
- ht: history of hypertension
- ui: presence of uterine irritability
- ftv: number of physician visits during the first trimester
- ptl: number of previous premature labours
- bwt: birth weight in grams

BRIEF REVIEW

Day 1 Topics

- Running SAS Code
- Importing Data
- Examining Data Attributes
- Manipulating Data

Running Code

PROC CONTENTS

Data Set Name	WORK.LOWBWT	Observations	189
Member Type	DATA	Variables	10
Engine	V9	Indexes	0
Created	04/18/2018 12:05:56	Observation Length	80
Last Modified	04/18/2018 12:05:56	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	WINDOWS_64		
Encoding	wlatin1 Western (Windows)		

	Engine/Host Dependent Information					
Data Set Page Size	65536					
Number of Data Set Pages	1					
First Data Page	1					
Max Obs per Page	817					
Obs in First Data Page	189					
Number of Data Set Repairs	0					
ExtendObsCounter	YES					
Filename	C:\Users\cmm2212\AppData\Local\Temp\SAS Temporary Files_TD6128_SPH-F4RGZ12-BIO_\lowbwt.sas7bdat					
Release Created	9.0401M0					
Host Created	X64 7PRO					

					AI	phabetic L	ist of	Varia	bles and /	Attributes
					#	Variable	Туре	Len	Format	Informat
					2	age	Num	8	BEST12.	BEST32.
					10	bwt	Num	8	BEST12.	BEST32.
					8	ftv	Num	8	BEST12.	BEST32.
					6	ht	Num	8	BEST12.	BEST32.
					1	low	Num	8	BEST12.	BEST32.
					3	lwt	Num	8	BEST12.	BEST32.
	aontonta	data	_		9	ptl	Num	8	BEST12.	BEST32.
proc	contents	uala	=	LOWDWL,	4	race	Char	5	\$5.	\$5.
	•				5	emoke	Num	ß	REST12	REST32

run;

COLUMBIA | MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

PROC PRINT

proc print data = lowbwt;

run;

The SAS System

Obs	low	age	lwt	race	smoke	ht	ui	ftv	ptl	bwt
1	0	19	182	black	0	0	1	0	0	2523
2	0	33	155	other	0	0	0	1	0	2551
3	0	20	105	white	1	0	0	1	0	2557
4	0	21	108	white	1	0	1	1	0	2594
5	0	18	107	white	1	0	1	0	0	2600
6	0	21	124	other	0	0	0	0	0	2622
7	0	22	118	white	0	0	0	1	0	2637
8	0	17	103	other	0	0	0	1	0	2637
9	0	29	123	white	1	0	0	1	0	2663
10	0	26	113	white	1	0	0	0	0	2665
11	0	19	95	other	0	0	0	0	0	2722
12	0	19	150	other	0	0	0	1	0	2733
13	0	22	95	other	0	1	0	0	0	2750
14	0	30	107	other	0	0	1	1	1	2750

DESCRIPTIVE STATISTICS

11

PROC MEANS

• Primarily used for reporting sums and means of numeric (continuous) variables

Syntax:
 proc means data=data_name;
 ... <options>;
 run;

- Without options, it will calculate the summary statistics for all numeric variables
 - Default statistics: N (number of non-missing obs), Mean, Std Dev, Min and Max

PROC MEANS: Options

- MAXDEC = n number of decimal places to be displayed
- MISSING treats missing values as valid summary groups
- NMISS number of missing values
- MEDIAN, QI (25th percentile), Q3 (75th percentile)
- QRANGE
- MODE
- RANGE
- SUM

PROC MEANS: VAR statement

- You can control which variables to include in the report using VAR statement
 - Variables that have the same name (with the exception of a number at the end can be listed together)

Syntax:

proc means data=data_name; var var1 var2 var3 ...; run;

PROC MEANS: Example 1

proc means data=lowbwt;

var bwt;

run;

	The MEANS Procedure										
	Analysis Variable : bwt										
	Ν	Mean	Std Dev	Minimum	Maximum						
18	89	2944.66	729.0224169	709.000000	4990.00						

proc means data=lowbwt n mean std median q1 q3 ndec=2;
 var bwt;

run;

The MEANS Procedure

	Analysis Variable : bwt										
N Mean Std Dev Median Lower Quartile Upper Quar											
	189	2944.66	729.02	2977.00	2414.00	3475.00					

PROC MEANS: BY Statement

- Produces descriptive statistics for each level of another (categorical) variable
- Make sure to sort your data set by the same variable(s) listed in the BY statement

```
Syntax:
```

```
proc means data=data_name;
  var var1 var2 var3 ...;
  by cat_var;
run;
```

• CLASS statement – similar to BY; no need to sort first, and generates more compact output (one table)

```
proc means data=data_name;
  var var1 var2 var3 ...;
  class cat_var;
run;
```

PROC MEANS: Example 2

proc means data=lowbwt n mean std median q1 q3 ndec=2;

class race;

var bwt;

run;

	The MEANS Procedure												
	Analysis Variable : bwt												
race	race N Obs N Mean Std Dev Median Lower Quartile Upper Quartile												
black	26	26	2719.69	638.68	2849.00	2367.00	3062.00						
other	67	67	2804.01	721.30	2835.00	2301.00	3274.00						
white	96	96	3103.74	727.72	3076.00	2575.50	3651.00						

PROC FREQ

- Can be used to count frequencies of both character and numeric variables in one-way, two-way, and three-way tables
- Typically used for categorical variables
- Can create output data sets containing counts and percentages
- Computes various stats such as chi-squared test/Fisher's Exact test, odds ratio, and relative risk (more details in future lectures)

Syntax:

proc freq data=data_name; ... <options>; run; COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

PROC FREQ

• For n-way contingency table, separate each variable name with * in the TABLES statement.

Syntax:

proc freq data=data_name; tables var1*var2; tables var3*var1*var2; run;

- Variable 1st listed (var1) forms the rows of the table, 2nd forms the columns
- 3rd variable listed (var3) creates multiple tables stratification by levels of var3

PROC FREQ: Example 1

proc freq data=lowbwt;

tables race smoke;

run;

The SAS System

The FREQ Procedure

race	Frequency	Percent	Cumulative Frequency	Cumulative Percent
black	26	13.76	26	13.76
other	67	35.45	93	49.21
white	96	50.79	189	100.00

smoke	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	115	60.85	115	60.85
1	74	39.15	189	100.00

PROC FREQ: Example 2

The SAS System

proc freq data=lowbwt;

tables race*smoke;

run;

The FREQ Procedure

Frequency	Table of race by smoke						
Percent Pow Pct		smoke					
Col Pct	race	0	1	Total			
	black	16 8.47	10 5.29	26 13.76			
		13.91	13.51				
	other	55 29.10 82.09 47.83	12 6.35 17.91 16.22	67 35.45			
	white	44 23.28 45.83 38.26	52 27.51 54.17 70.27	96 50.79			
	Total	115 60.85	74 39.15	189 100.00			

PROC FREQ: Example 3

proc freq data=lowbwt;

tables ht*race*smoke;

run;

Frequency	Table 1 of race by smoke							
Percent	Controlling for ht=0							
Col Pct		smoke						
	race	0	1	Total				
	black	14	9	23				
		7.91	5.08	12.99				
		60.87	39.13					
		12.96	13.04					
	other	51	12	63				
		28.81	6.78	35.59				
		80.95	19.05					
		47.22	17.39					
	white	43	48	91				
		24.29	27.12	51.41				
		47.25	52.75					
		39.81	69.57					
	Total	108	69	177				
		61.02	38.98	100.00				

The FREQ Procedure

Frequency	Table 2 of race by smoke							
Percent Bow Bot	Controlling for ht=1							
Col Pct			smoke					
	race	0	1	Total				
	black	2 16.67 66.67 28.57	1 8.33 33.33 20.00	3 25.00				
	other	4 33.33 100.00 57.14	0 0.00 0.00 0.00	4 33.33				
	white	1 8.33 20.00 14.29	4 33.33 80.00 80.00	5 41.67				
	Total	7 58.33	5 41.67	12 100.00				

PROC FREQ: Options

- Use any of these in the TABLES statement: tables var1 / <options>; * one-way table; or tables var1*var2 / <options>; * two-way table;
- NOFREQ suppress cell frequencies
- NOPERCENT suppress cell percentages
- NOCUM suppress cumulative counts and percentages
- NOROW suppress row percentages (for n-way tables)
- NOCOL suppress column percentages (for n-way tables)

DATA VISUALIZATION

Visualizing Data

- Histograms
- Boxplots
- Scatterplots

PROC SGPLOT

- Creates one or more plots and overlays them on a single set of axes
- Graphics include: scatterplots, line plots, histograms, boxplots, regression plots, etc.

Syntax:

proc sgplot data=data_name;
statement variable_name/ <options>;
run;

• Statement specifies the type of graph to construct

PROC SGPLOT: Histogram 1

SAS code:

```
proc sgplot data=lowbwt;
   histogram bwt;
   density bwt;
   title "Histogram of Birthweight";
run;
title;
```

* Use to view continuous variables

PROC SGPLOT: Histogram 2

SAS code:
proc sort data=lowbwt;
 by smoke;
run;

proc sgplot data=lowbwt; by smoke; histogram bwt; density bwt; run;

* Use to view continuous variables by a categorical variable

PROC SGPLOT: Options for histogram

- binstart = n; n is the midpoint of first bin
- binwidth = n; n is the bin width
- nbins = n; n is the number of bins
- scale = percent, count, or proportion;
- showbins; places tick marks at midpoints of bins

PROC SGPLOT: Boxplots 1

SAS code:

```
proc sgplot data=lowbwt;
```

```
vbox bwt / group=smoke ;
```

```
keylegend / title="Smoking Status";
```

```
yaxis label="Birthweight";
```

```
title "Boxplots of Birthweight by Smoking Status";
```

run;

title;

- **bwt** is the continuous variable
- Smoke is the categorical variable
- vbox / hbox options for vertical /horizontal boxplots

PROC SGPLOT: Boxplots 2

proc sgplot data=lowbwt;

```
vbox bwt / group=smoke category=race;
```

```
keylegend / title="Smoking Status";
```

```
yaxis label="Birthweight";
```

title "Boxplots of Birthweight by Smoking Status and Race";

* Use to view continuous variables by **two** categorical variables

PROC SGPLOT: Scatterplot 1

SAS code:

```
proc sgplot data=lowbwt;
```

```
scatter x=age y=bwt ;
```

title "Scatterplot of Birthweight by Mother's

Age";

run;

title;

* Use to view a continuous variable by a continuous variable

PROC SGPLOT: Scatterplot 2 SAS code:

```
proc sgplot data=lowbwt;
```

scatter x=age y=bwt / group=smoke;

title "Scatterplot of Birthweight by Mother's Age and Smoking Status";
Scatterplot of Birthweight by Mother's Age and Smoking Status

run;

title;

* Use to view a continuous variable by a continuous variable at different levels of a categorical variable

PROC UNIVARIATE

- Also produces simple summary statistics (mean, standard deviation)
- Generates histograms, boxplots, normal probability plots (QQ plots)
- Conducts tests for normality

Syntax:

proc univariate data=data_name;
 <options>;
run;

PROC UNIVARIATE: Ex 1

proc univariate data=lowbwt;

var bwt;

run;

Moments								
Ν	189	Sum Weights	189					
Mean	2944.65608	Sum Observations	556540					
Std Deviation	729.022417	Variance	531473.684					
Skewness	-0.210171	Kurtosis	-0.0814157					
Uncorrected SS	1738735950	Corrected SS	99917052.6					
Coeff Variation	24.7574724	Std Error Mean	53.0285779					

Basic Statistical Measures								
Location Variability								
Mean	2944.656	Std Deviation	729.02242					
Median	2977.000	Variance	531474					
Mode 2495.000		Range	4281					
		Interquartile Range	1061					

Note: The mode displayed is the smallest of 4 modes with a count of 4.

Tests for Location: Mu0=0								
Test		Statistic	p Val	ue				
Student's t	t	55.52961	Pr > t	<.0001				
Sign	М	94.5	Pr >= M	<.0001				
Signed Rank S 8977.5 Pr >= S <.0001								

Quantiles (Definition 5)						
Quantile	Estimate					
100% Max	4990					
99%	4593					
95%	3997					
90%	3884					
75% Q3	3475					
50% Median	2977					
25% Q1	2414					
10%	1970					
5%	1790					
1%	1021					
0% Min	709					

Extreme Observations							
Low	est	Highest					
Value	Obs	Value	Obs				
709	160	4167	83				
1021	87	4174	84				
1135	161	4238	159				
1330	88	4593	85				
1474	89	4990	86				

PROC UNIVARIATE: Options

- PLOTS option in the PROC UNIVARIATE line
 Gives a stem-and-leaf plot, a boxplot, and a QQ plot
- **HISTOGRAM** statement generates histograms and offers several options (e.g., change the width of the bars, the colors, etc.)
- **PROC UNIVARIATE** is great for checking distributional assumptions (normality) and generate summary statistics for continuous variables

PROC UNIVARIATE: Ex 2

4238.0

99%

4250

3250

3750

4750

														, i	Distributi	ion of by	
proc ı	iniv	7ar	iat	te dat	a=	lowbwt	;					30 -					
												25 -					
clas	5 <mark>5</mark> 5	smo	ke.	;							(e = 0	20 -					
											smol	15 -					
var	bwt	;										5 -			-		1
		-															
hist	oar	am	b	wt.;								jage -]	
	-00-											25 –					-
m; —			The UN						71		ke 1	20 -					
, in the second s			THE OF	Variable: bwt					The U	Variable:	bwt	10 -					
				SHOKE - 0						smoke	= 1	5 -					
				Moments						Momer	nts	₀⊥₀					
	N		3054 0	115 Sum Weights	ione	115	N			74 Su	m Wei		750 1250	1750	2250	2750 bwd	
	Std I	Deviation	752.40	09013 Variance	566	119.323	Mean	1	2773.	24324 Su	m Obs					5WI	
	Skev	wness	-0.29	11419 Kurtosis	-0.3	268633	Std D	eviation	660.0	75168 Va	iance		435699.228				
	Unco	orrected S	SS 11378	04928 Corrected SS	645	37602.8	Skew	ness	-0.29	55374 Ku	rtosis		0.42038264				
	Coef	ff Variatio	n 24.629	91234 Std Error Mea	n 70.	625022	Unco	rrected s	SS 6009	31022 Co	rrected SS	5	31806043.6				
			Basic	Statistical Measures			Coen	variatio	n 23.80	15005 500	Error Me	an	10.1321191				
		Loc	ation	Variability					Basic	Statistica	I Measure	s					
		Mean	3054.957	Std Deviation	752.4090	1		Loc	ation		Variabili	ity					
		Median	3100.000	Variance	56611	9		Mean	2773.243	Std Devi	ation	660.	.07517				
		Mode	2920.000	Range	396	19		Median	2775.50	Variance		4	35699				
				interquartie runge	110			Mode	2466.000	Range	etile Dene	002	3529				
	Note: The	mode dis	splayed is	the smallest of 3 mo	des with	a count of 3.				interqua	rule Rang	e 693.	.00000				
									Tests	for Locat	ion: Mu0=	0					
			Tests	for Location: Mu0=0				Test		Statistic	p١	Value					
		Test		Statistic p Va	lue			Stude	ent's t	36.1418	15 Pr > t	<.0	001				
		Sign	entst t	43.54116 Pr > [t]	< 0001			Sign		M 3	7 Pr >=	MI <.0	001				
		Signe	d Rank S	3335 Pr >= S	<.0001			Signe	d Rank	5 1387.	5 Pr >= \$	s <.0	001				
									Qua	ntiles (De	finition 5)						
			Qua	ntiles (Definition 5)					Qua	ntile	Estimate						
			doore	ine suindle					1009	6 Max	4238.0						

100% Max

-

4990

1500

BASIC HYPOTHESIS TESTING

T-tests in SAS

• PROCTTEST

- Can be used for one-, two-sample
- Independent and paired samples
- Always remember to check model assumptions before inferences
 - Normality (for small samples)
 - Independent observations within the group(s) (not repeated)
- For a T-test, check the normality assumption
 - QQPLOT is a statement in PROC UNIVARIATE
 - Listing NORMAL in the PROC line will output tests for normality (with a p-value > α , the null hypothesis that the data came from a normally distributed population cannot be rejected)

One-sample T-test

```
H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0
```

proc ttest data=data_name HO=nullvalue;
 var var_name;
run;

- The default value for H_0 is zero ($\mu_0=0$)
- The default α is 0.05
 - Specify alpha=... in the PROC line
- The default hypothesis is two-sided (≠) (SIDES=2)
 - Specify SIDES=L (<) or SIDES=U (>) in the PROC line

One-sample Example

 Is the average age of mother's in this sample different from 26?

proc ttest data=lowbwt HO=26;

var age;

Two-sample independent T-test

```
H_0: \mu_1 = \mu_2
H_1: \mu_1 \neq \mu_2
```

proc ttest data=data_name HO=nullvalue;

```
class group_variable;
```

```
var var_name;
```

run;

- In the two-sample case, remember to test for the equality of variances!!
 - Equality of Variance test is part of the output when you use a CLASS statement

Two-sample Example

 Is the birthweight of babies born to smokers significantly different than the birthweight to babies born to non-smokers?

The TTEST Procedure

Variable: bwt

smoke	Ν	Mean	Std Dev	Std Err	Minimum	Maximum
0	115	3055.0	752.4	70.1625	1021.0	4990.0
1	74	2773.2	660.1	76.7322	709.0	4238.0
Diff (1-2)		281.7	717.8	107.0		

smoke	Method	Mean	95% CL	Mean	Std Dev	95% CL	Std Dev
0		3055.0	2916.0	3193.9	752.4	666.1	864.6
1		2773.2	2620.3	2926.2	660.1	568.2	787.7
Diff (1-2)	Pooled	281.7	70.6927	492.7	717.8	651.8	798.7
Diff (1-2)	Satterthwaite	281.7	76.4668	487.0			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	187	2.63	0.0092
Satterthwaite	Unequal	170	2.71	0.0074

Equality of Variances								
Method	Num DF Den DF F Value Pr >							
Folded F	114	73	1.30	0.2290				

Outcome: Continuous Predictor: Binary

Two-sample Example

 Is the birthweight of babies born to smokers significantly different than the birthweight to babies born to non-smokers?

Two-sample paired T-test

$$H_0: \mu_1 = \mu_2 \text{ or } \mu_1 - \mu_2 = 0 H_1: \mu_1 \neq \mu_2 \text{ or } \mu_1 - \mu_2 \neq 0$$

proc ttest data=data_name HO=nullvalue;
 paired before*after;

run;

proc ttest data=data_name HO=nullvalue;
 var diff; /* diff=after-before */
run;

Analysis of Variance (ANOVA)

- If we want to compare the (continuous) outcomes of 3 or more groups
- Model assumptions:
 - Independent samples
 - Responses within the groups are independent and identically distributed (i.i.d.)
 - Residuals are normally distributed
 - Equality of variances across groups

One-Way ANOVA

- One categorical factor with multiple levels
- Use PROC GLM
 - Can also accommodate multiple factors and interactions
- Simplest syntax (only one categorical factor):

```
proc glm data=data_name;
    class categorical_factor;
    model continuous_response=categorical_factor;
run;
```

ANOVA: Example

• Does birthweight significantly differ by race?

proc glm data=lowbwt;

class race;

model bwt=race;

run;

Outcome: Continuous

Predictor: Categorical (3 or more levels)

The GLM Procedure

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	5070607.63	2535303.82	4.97	0.0079
Error	186	94846445.01	509927.12		
Corrected Total	188	99917052.65			

R-Square	Coeff Var	Root MSE	bwt Mean
0.050748	24.25043	714.0918	2944.656

Source	DF	Type I SS	Mean Square	F Value	Pr > F
race	2	5070607.632	2535303.816	4.97	0.0079

Source	DF	Type III SS	Mean Square	F Value	Pr > F
race	2	5070607.632	2535303.816	4.97	0.0079

Categorical Data Analysis

- Categorical outcome (Y) with 2 levels (binary) or
 ≥3 levels (nominal or ordinal)
- Examples:
 - Nominal: race/ethnicity
 - Ordinal: clothing sizes (S, M, L, XL)
 - Binary: Disease/ No Disease; Republican/Democrat
- Predictor variables (X) can take on any form: binary, categorical, and/or continuous

Chi-squared Test of Independence

- Use two categorical variables (row and column) to test whether they are independent or associated
- Hypotheses:

H0: variables A and B are independent

VS

HI: variables A and B are not independent

Test statistics:
$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

Chi-squared Test of Independence

- Create a (r X c) table
 - r represents the number of levels for the row variable
 - c represents the number of levels for the column variable
 - Most common example is a 2×2 table
- Use the observed and expected counts in each cell to calculate the chi-squared statistics
- If low expected cell counts (< 5), use Fisher's Exact test instead

Chi-squared Test in SAS

Syntax:

proc freq data=data_name;

tables var1*var2/expected exact chisq;

run;

- Chisq-computes Chi-squared statistics/p-value
- Exact-computes Fisher's Exact test/p-value
- Expected-produces expected values

Chi-Squared Test: Example

 Is there an association between history of uterine irritability and having a low birthweight baby?

proc freq data=lowbwt;

table ui*low / chisq
expected exact;

run;

Outcome: Categorical	
Predictor: Categorical	

Fisher's Exact Test			
Cell (1,1) Frequency (F)	116		
Left-sided Pr <= F	0.9934		
Right-sided Pr >= F	0.0198		
Table Probability (P)	0.0132		
Two-sided Pr <= P	0.0269		

The FREQ Procedure

Frequency	Table of ui by low				
Expected		low			
Row Pct	ui	0	1	Total	
Col Pct	0	116 110 74	45	161	
		61.38 72.05 89.23	23.81 27.95 76.27	<mark>8</mark> 5.19	
	1	14 19.259	14 8.7407	28	
		7.41 50.00 10.77	7.41 50.00 23.73	14.81	
	Total	130 68.78	59 31.22	189 100.00	

Statistics for Table of ui by low

Statistic	DF	Value	Prob
Chi-Square	1	5.4008	0.0201
Likelihood Ratio Chi-Square	1	5.0761	0.0243
Continuity Adj. Chi-Square	1	4.4227	0.0355
Mantel-Haenszel Chi-Square	1	5.3722	0.0205
Phi Coefficient		0.1690	
Contingency Coefficient		0.1667	
Cramer's V		0.1690	

Other Options for Proc Freq

- **/agree** McNemar's test for matched pair analysis (proportion)
- /chm Chi-square test for 2X2Xk table (k strata) Breslow-Day Test, Cochran-Mantel Haenszel test
- **/noprint** Do not print tables in the output
- /trend Cochran-Armitage trend test for proportions

Need advanced methods?

- Elementary Statistics Using SAS (Schlotzhauer).
- Categorical Data Analysis Using SAS, 3rd edition (Stokes, Davis, and Koch).
- UCLA Institute for Digital Research and Education
 <u>https://stats.idre.ucla.edu/sas/</u>

Thank you!

BERD EDU link:

http://irvinginstitute.columbia.edu/resources/biostat_educational_initiatives.html

Acknowledgements: Cody Chiuzan, PhD