COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH IRVING INSTITUTE FOR

PUT A

clinical and translational research

Biostatistics, Epidemiology & Research Design education initiatives

BIOSTATISTICS

GETTING STARTED WITH R (PART 1)

Christine Mauro, PhD November 19, 2018 data input; proc sort; proc freq; proc glm;

≣ <SQL3

COLUMBIA UNIVERSITY OF PUBLIC HEALTH BIOSTATISTICS

About Me

- Assistant Professor, Dpt. Of Biostatistics
- Teaching:
 - ReMA Quantitative Foundations (Fall, MPH Core)
 - Analysis of Categorical Data (Spring)
 - Grant Writing (Summer, CSRI)
- Research: Application of statistics to mental health, psychiatry, and health policy.
 - Diagnosis and Treatment of Complicated Grief
 - Impact of Medical Marijuana Laws on drug use
 - Impact of the Affordable Care Act among those with substance use disorders.
 - Opioid Center

Outline

- Motivating Example
- Overview of R and R Studio
- Importing Data
 - Read CSV files using readr package
- Examining Data Attributes
 - Data structure, type and dimensionality
- Manipulating Data (Data Wrangling)
 - Select, Filter, Mutate, Arrange
 - Stacking and Merging

Application

- A study was conducted to identify risk factors for low infant birth weight using data from 189 live births at Bay State Medical Center in Massachusetts. Low birthweight was defined as a <2500grams.
- We have one data set for low birthweight-babies (lowbwt_LOW.csv) and another for normal birthweight babies (lowbwt_Normal.csv).
 - id = ID number of infant
 - smoke = smoking during pregnancy = 1 if yes; 0 if no
 - age = mother's age in years
- We have a separate dataset with data on # of visits (lowbwt_ADMIN.csv).
 - id = ID number of infant
 - visits = number of physician visits during 1st trimester = 0 if none; 1 if one;
 2 if two or more

Why R?

- R is a FREE, open-source software used for statistical computing and graphics
- Can be frustrating: a steep learning curve
- Installing R: <u>http://cran.r-project.org/</u> (for Windows, Mac, Linux)
- Some online resources:

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

http://www.mayin.org/ajayshah/KB/R/index.html

R.D., Peng Exploratory Data Analysis With R: https://leanpub.com/exdata

What is RStudio?

- User-friendly development environment for R
- Installing RStudio: <u>http://www.rstudio.com/</u>
- Some online resources:

http://dss.princeton.edu/training/

http://libguides.princeton.edu/dss

RStudio Windows

RStudio		
File Edit Code View Plots Session Build Debug Tools Help		
💽 🔹 🥶 🖌 🔒 🚔 📝 Go to file/function		🔳 Project: (None) 🔻
Console 0:/Teaching/Regression/P8111 Chiuzan/Lecture2/	0 Untitled1* x A × 0 P8111 Lec02.R ×	-0
<pre>> A<-matrix(c[1,2,3,4,5,6),nrow=2, ncol=3, byrow=T) > x<-runif(10,0,3) > y<-runif(10,10,100) > plot(x,y,col=2,pch=19) > getwd() [I] "0:/Teaching/Regression/P8111_Chiuzan/Lecture2" > setwd("0:/Teaching/Regression/P8111_Chiuzan/Lecture2") ></pre>	<pre>> onudor: * * * * * * * * * * * * * * * * * * *</pre>	Run Source Run Source Run Rescript contains commands /functions to submit to the command line
Files Plots Packages Help Viewer	3:1 (Top Level) \$	R Script \$
🖕 🧼 🧶 Zoom 🗷 Export - 🍳 🎸 😚 Publish 🎯	Environment History	
	🚰 🔒 🔤 Import Dataset 👻 🥑	≣ List ▼
Plots tab displays the graphs	Global Environment *	
	A num [1:2, 1:3] 1 4 2 5 3 6 Omeasure 211 obs. of 9 variables O ves0 93 obs. of 9 variables O ves1 74 obs. of 9 variables O ves2 21 obs. of 9 variables O ves3 23 obs. of 9 variables Values apcs 0.6 bestdelta 0.07 defect	History tab keeps a record of all previous commands Environment contains created
0.5 1.0 1.5 2.0 2.5 x	φ foo List of 29 K 5 level num [1:3] 3 4 5 N 24 nlevel 4	objects

R Workflow

- For every new project, do the following:
 - Create a directory with a reasonable name and path (e.g. ~/Documents/RCourse_Part1/)
- Put an R Project in the directory
 - Create an R Project using File > New Project > Existing Directory and specifying the directory you just created.
- Keep everything related to the analysis datasets, scripts, reports, output in there!

Let's try it!

- Create a directory with a reasonable name and path (e.g. ~/Documents/RCourse_Part1/)
- Create an R Project using File > New Project > Existing Directory and specifying the directory you just created.
- Move the three datasets for this assignment to that directory!

RStudio - Essentials

• How to create and save an R script

R	RStudio									
Fil	File Edit Code View Plots Session Build Debug Tools Help									
	New File	I		R Script Ctrl+Shift+N						
	New Project		R Markdown		-0	🖭 Untitled1* ×	Untitled2* x A x P P8111_Lec02.R x			
	Open File	Ctrl+O		Shiny Web App		\$\$ 2	🔒 🔲 Source on Save 🛛 🔍 Ž 🔹 🗐			
	Reopen with Encoding Recent Files		•	Text File C++ File	1 2 3 # This	is my first R script				
	Open Project Open Project in New Session Recent Projects		•	R Sweave R HTML R Presentation	n	5				
	Save Save As	Ctrl+S	-	R Documentation						
	Save with Encoding Save All	Ctrl+Alt+S								

- Type R commands and run them
 - Note that you can execute commands (e.g. the line with the cursor or highlighted code) in the console from a script using Command+Enter (Mac) or Ctrl+Enter (Windows).

R Packages

- Packages are collections of **R** functions, data, and compiled code in a well-defined format.
- The directory where packages are stored is called the library.
- **R** comes with a standard set of packages. Others are available for download and installation.
 - Only need to install package one time.
- Once installed, they have to be loaded into the session to be used.
 - Once installed, you need to load package every time you use R!

Let's try it: Packages

- Start a new R script. Save the script so you have the code for later.
- Type a comment at the beginning of your program.
- Install and Load dplyr package:
 - install.packages(c("dplyr"))
 - This installs dplyr if you haven't used it before
 - Type y in console to any questions about installing dependencies!
 - library(dplyr)
 - This loads the dplyr library repeat every time you open R!

Let's try it: Packages

	SmartArt
	~/OneDrive - cumc.columbia.edu/Teaching/
0 - Q	🦥 🛫 🖌 🔚 📑 🖾 🖌 👝 Go to file/function 🛛 🗄 👻 🖌 Addins 👻
(a) first	t_Rprogram.R ×
	🔊 📄 Source on Save 🔍 🎢 📲 🚽 🖶 🚽 🖃 🔿 Source 👻 🚍
1 -	***************************************
2	# November 19, 2018
3	# Christine Mauro
4	#
5	# Getting Started with R
6 -	***************************************
7	
8	#only run install the first time you use a package
9	<pre>#install.packages(c("dplyr"))</pre>
10	
11	library(dplyr)

Why dplyr?

- Most of what we are going to learn today can be done in base R using other code.
- We are using dplyr which is a part of the tidyverse.
- Why the tidyverse?
 - The tidyverse is a coherent system of packages for data manipulation, exploration and visualization that share a common design philosophy.
 - mostly developed by Hadley Wickham.
 - Tidyverse packages are intended to make statisticians and data scientists more productive by guiding them through workflows that facilitate communication, and result in reproducible work products.

R Help

Use tab 'Help' to look for a topic

E.g., look for function 'plot'

- Tab 'Help' has a history of the most recent topics you inquired about
- Or just type help(plot) in the console

 Or ?plot

_		
(RStudio	
	File Edit Code View Plots Session Build Debug Tools Help	
	💽 📲 🛃 🔚 🔚 🥻 Go to file/function 🔄 📴 💌 Addins 👻	
	Console O:/Teaching/Regression/P8111_Chiuzan/Lecture2/	,
	<pre>> detach("package:dplyr", unload=TRUE) > library("dplyr", lib.loc="~/R/win-libraryX3.3")</pre>	^
	Attaching package: 'dplyr'	
	The following objects are masked from 'package:stats':	
	filter, lag	=
	The following objects are masked from 'package:base':	
	intersect, setdiff, setequal, union	
	Warning message:	-
	package 'dplvr' was built under R version 3.3.2	
	Files Plots Packages Help Viewer	
	P: Generic X-V Plotting * Eind in Tonic	G
	Re Generic X Fridding • Friddin topic	
	plot {graphics} R Documentation	
	Generic X-X Plotting	≡
	Cenenc X-1 Houng	
	Description	
	Generic function for plotting of R objects. For more details about the graphical parameter arguments, see par.	
	For simple scatter plots, <u>plot.default</u> will be used. However, there are <u>plot</u> methods for many <u>R</u> objects, including <u>function</u> s, <u>data.frame</u> S, <u>density</u> objects, etc. Use methods (plot) and the documentation for these.	
	Usage	
	plot(x, y,)	
	Arguments	
	x the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R object with a plot method can be provided.	-

R Syntax

- R is an object-oriented programming language

 If you want to save results, need to store them in an object.
- R is case sensitive: 'A' and 'a' are different symbols
- Commands are separated either by (;) or by a new line

- Commands can be grouped together (in functions) by { and }

- Comments can be inserted almost anywhere
 - Starting with a '#', everything to the end of the line is a comment
 - Use comments to document your code: for YOU and OTHERS!!

R Errors

- Syntax errors generated by misspelling or forgetting to close a bracket
- Semantic errors correct code, but the outcome is NOT what you expected
- Logic errors worst case! The mistake is not in the code, but the logic of execution

IMPORTING DATA

Reading Data into R

- First, you need to save your data onto your computer
 - Excel, SPSS, or some other type of file
 - Datasets need to be in the "PROJECT" folder we created earlier
- Some useful tips:
 - Reserve the first row for headers (variable/column names)
 - First column is used to identify sampling units
 - Avoid named or fields with blank spaces; put a '_' instead.
 - Delete comments from Excel
 - Missing values should be noted with '.' or 'NA'
 - Avoid symbols such as: ' #, ?, *, <, /, -, }'

Reading Data into R

Read CSV files – if you have a '.csv' file (comma separated file)

read_csv("./Data.csv") You need to load the readr package first!

```
first_Rprogram.R* ×
🔄 🔿 🛛 🗖 🛛 🗖 🖸 Source on Save 🛛 🔍 🎢 🖌 🥅
 # November 19, 2018
 2
 3 # Christine Mauro
 4
    #
 5
    # Getting Started with R
 7
    #only run install the first time you use a package
 8
    #install.packages(c("dplyr", "tidyr"))
 9
 10
 11
 12
    library(dplyr)
    library(readr)
 13
 14
    lowbwt_data = read_csv(file = "./lowbwt_Low.csv")
 15
    names(lowbwt_data)
 16
    lowbwt_data
 17
 18
```

DATA ATTRIBUTES

Data Description

Before running any analysis, make sure you examine your data!!!

Number of variables and their types, number of observations, dates of creation, etc.

- Check variable names
 R: names(mydata)
- Check data dimensions: (#rows) by (# columns)
- Look at the 'top' and 'bottom' of the data R: head(mydata), tail(mydata)
- Check "structure"
 R: str(mydata)
- Check for missing data R: anyNA(mydata)

COLUMBIA UNIVERSITY of PUBLIC HEALTH

Let's try it!

ta)	···-										
(a)	> head(lowbwt_	data)								
-a)	# A tib	ble: 6	х З								
u)	id	smoke	age								
a)	<int></int>	<int></int>	<int></int>								
ita)	1 31	0	20								
-	2 76	0	20								
	3 44	1	20								
	4 68	1	17								
	5 23	1	19								
	6 45	1	17								
	> tail(lowbwt_	data)								
	# A tib	ble: 6	х З								
	id	smoke	age								
	<int></int>	<int></int>	<int></int>								
	1 19	0	24								
	2 11	1	34								
	3 56	1	31								
	4 65	1	30								
	5 10	0	29								
	6 ZZ	1	32								
	> str(l	owbwt_d	lata)			-					
	Classes	'tbl_d	if', 'tb	L' and	data	1.frame	e':	59	obs. of	3 variab	les:
	\$ 10	: 1nt	31 76 4	44 68	23 45	51 49	71 83	s			
	\$ smok	e: int	001	111	100	0					
	\$ age	: 1nt	20 20	20 17	19 17	20 18	17 17	· · · ·			
	- attr	(≁, "sp	ec")=L1	st of	2						
	\$ C	OLS :	List of	3							
		\$ 1d	: [1st()							

18

- 19 #Viewing data
- 20 View(lowbwt_data)
- 21 head(lowbwt_data)
- 22 tail(lowbwt_data)
- 23 str(lowbwt_data)
- 24 anyNA(lowbwt_data)

25

Data Description: Examples

- Tabulate your data R function: table(mydata)
- Symbol '\$' is used to select a specific column from your dataset

Example: tabulate variable 'smoke' from data 'low_birth'

```
> table(lowbwt_data$smoke)
0 1
29 30
> table(lowbwt_data$age)
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34
2 2 1 5 2 3 8 5 2 5 5 6 4 2 2 1 1 1 1 1
```

• In data 'low_birth' there are 30 subjects identified as 'smokers' and 29 subjects that are 'non-smokers'.

DATA MANIPULATION

Operators in R

Logical comparisons

- < for less than
- > for greater than
- <= for less than or equal to
- >= for greater than or equal to
- == for equal to each other
- != not equal to each other
- is.na() is NA
- lis.na() is not NA.

Logical operators

value == 2|3; value equal 2 or (|) 3
&; means and. For example smoke == "0" & age > 25

Data Transformations: R Math

- >log() natural logarithm
- >sqrt() square root
- $>x^n exponent$

Matrix Operations:

- >A%*%B matrix multiplication
 >t(A) matrix transpose
 >det(A) determinant of A
 >diag(A) diagonal of A
- >solve(A) matrix inverse

Data Manipulation (or Wrangling)

- From this point forward we will use library(dplyr) for data selection and manipulation
- Main Functions for data manipulation in dplyr:
 - I. Select
 - 2. Filter
 - 3. Mutate
 - 4. Arrange

Select

- From this point forward we will use library(dplyr) for data selection and manipulation
- Select only certain columns (or variables in a dataset) R function: select(mydata, col_name)
- Examples:
- select only one column
- select several columns
- select all columns but one

COLUMBIA MAILMAN SCHOOL UNIVERSITY of PUBLIC HEALTH

Let's try it: SELECT

```
31 ####### Data Manipulation
32 #Select
33 select(lowbwt_data, id, smoke)
34 lowbwt_data_subsetA = select(lowbwt_data, id, smoke)
35
36 select(lowbwt_data, -smoke)
37
```

Renaming Variables

Renaming a variable in a dataset can be done with:
 R function: rename(mydata, new_name_var = old_name_var)

Example: Rename variable 'smoke' to 'smoking_status'

> rend	ame(lowbwt_da	ıta,	smoke_	_status=s	moke)
# A ti	ibbl	e: 59 x 3				
	id :	smoke_sta	tus	age		
<i1< th=""><th>nt></th><th><i< th=""><th>nt></th><th><int></int></th><th></th><th></th></i<></th></i1<>	nt>	<i< th=""><th>nt></th><th><int></int></th><th></th><th></th></i<>	nt>	<int></int>		
1	31		0	20		
2	76		0	20		
3	44		1	20		
4	68		1	17		
5	23		1	19		
6	45		1	17		
7	51		1	20		
8	49		0	18		
9	71		0	17		
10	83		0	17		
#	wit	h 49 more	row	S		
<u></u>						

Filter

- Filter
 - Some data tables will include rows you don't need for your current analysis.
 - You should filter rows based on logical expressions using the filter function.
 - You will often filter using comparison operators (>, >=, <, <=, ==, and !=).</p>
- Example: Suppose we only want to include mothers under 20 years of age.

Let's try it: FILTER

> f	ilter(l	owbwt_	data,	age	<	20)
# A	tibble	: 15 x	3			
	id s	moke	age			
	<int> <</int>	int> <	int>			
1	68	1	17			
2	23	1	19			
3	45	1	17			
4	49	0	18			
5	71	0	17			
6	83	0	17			
7	50	1	18			
8	33	0	19			
9	78	1	14			
10	37	1	17			
11	34	1	19			
12	57	0	15			
13	62	0	15			
14	25	0	16			
15	81	0	14			
< L						

More examples: FILTER

- What if we want moms < 20 and non-smokers??
 - filter(lowbwt_data, age < 20 & smoke==0)</pre>
 - filter(lowbwt_data, age < 20, smoke==0)</pre>
- What if we want moms < 20 OR non-smokers

 filter(lowbwt_data, age < 20 | smoke==0)

MUTATE

- Sometimes you need to change columns or create new ones.
 - You can do this using mutate.
 - NOTE: columns = variables in your data set; rows = observations in data set
- Example: apply a log transformation to skewed variables

R function: mutate(mydata, new_name_var = transform_old_var)

Let's try it: Mutate

- Sometimes you want to create new variables derived from existing ones
 - E.g., apply a log transformation to skewed variables

R function: mutate(mydata, new_name_var = transform_old_var)

Example: Let's take the log of 'age'

i y u	iala,			c_vai -	- li ans			
> 1	owbwt.	_data2	= muto	ate(lowbw	t_data,	log_age	=log(age)))
> 1	owbwt.	_data2						
# A	tibb	le: 59	x 4					
	id	smoke	age	log_age				
	<int></int>	<int></int>	<int></int>	<dbl></dbl>				
1	31	0	20	3.00				
2	76	0	20	3.00				
3	44	1	20	3.00				
4	68	1	17	2.83				
5	23	1	19	2.94				
6	45	1	17	2.83				
7	51	1	20	3.00				
8	49	0	18	2.89				
9	71	0	17	2.83				
10	83	0	17	2.83				
# .	wi	th 49 r	nore ro	ws				

Mutate Example 2

- What if we wanted to create a new binary variable to indicate age < 20?
- Need if <u>else</u> function. General syntax:

- if_else (condition, value if true, value if false)

ARRANGE

 Order rows of a data according to one of the variables

R function: arrange(mydata, ordering_variable)

Example: order data by 'id'

- Use function desc() to arrange in descending order
- See R code for ordering by multiple variables/columns

> #Ar	range	to so	rt dat	a
> arr	ange(lowbwt	_data,	id)
# A t	ibble	: 59 x	3	
	id s	noke	age	
<i< th=""><th>nt> <</th><th>int> <</th><th>int></th><th></th></i<>	nt> <	int> <	int>	
1	4	1	28	
2	10	0	29	
3	11	1	34	
4	13	0	25	
5	15	0	25	
6	16	0	27	
7	17	0	23	
8	18	0	24	
9	19	0	24	
10	20	1	21	
#	with	49 mo	re row	s

COMBINING DATASETS

Combining Datasets (Stacking)

- Combine datasets that have the same variables but different observations
- Combine by Rows:

Combine by Rows

• General Syntax:

- combined_data = bind_rows(data I, data2, data3, ...)

- Before stacking datasets, it's helpful to create a variable to identify which data source they are coming from!
 - mutate(datal, variable=l)
 - mutate(data2, variable=2)

Let's try it: Stacking Datasets

• Right now we only have data on low birthweights; suppose we want to combine that with data on normal birthweights.

```
20
59
    60
61
    # Read in normal weight data
62
    normalbwt_data = read_csv(file = "./lowbwt_Normal.csv")
63
    #create a variable to identify data source in each file
64
    lowbwt_data = mutate(lowbwt_data, bwt="low")
65
    normalbwt_data = mutate (normalbwt_data, bwt="normal")
66
67
68
    #combine the data sets by stacking
    combined_data = bind_rows(lowbwt_data, normalbwt_data)
69
```


Result

	> co	ombine	ed_data	a 🛛	
1	¥Α	tibbl	.e: 189) x 4	
		id	smoke	age	bwt
		<int></int>	<int></int>	<int></int>	<chr></chr>
	1	31	0	20	low
	2	76	0	20	low
	3	44	1	20	low
	4	68	1	17	low
	5	23	1	19	low
	6	45	1	17	low
	7	51	1	20	low
	8	49	0	18	low
	9	71	0	17	low
	10	83	0	17	low
1	¥	. wit	:h 179	more i	ows
2	>				

Merging Datasets

• Useful when you need to combine data from different sources, or at different times

data	1	data	12		com	bined	
ID	Age	ID	Age	Weight	ID	Age	Weight
1	15	1	15	115	1	15	115
2	20	2	20	134	2	20	134
3	18	6	22	140	3	18	
					6	22	140

- Merging two datasets require that both have at least one variable in common (either character or numeric).
 - If character, make sure the categories have the same spelling (i.e. country names, etc.).

Merging Datasets in R

*_join in R

General Syntax

- newdata = inner_join(data I, data2, by = "ID")
- newdata = left_join(data I, data2, by = "ID")
- newdata = right_join(data I, data2, by = "ID")
- newdata = full_join(data I, data2, by = "ID")

Let's try it: Merging datasets

• Suppose we'd like to bring in information on # of visits during the first trimester from another administrative data source.

```
11
72
   ######## merging datasets
73
74
    #Read in administrative data set
    admin_data = read_csv(file = "./lowbwt_ADMIN.csv")
75
    admin_data
76
77
78
    combined data
79
    merged_data = full_join(combined_data, admin_data, by = "id")
80
81
    merged_data
```

> merged data

Results and write_csv

#At	ibble	: 189) x 5								
	id sr	noke	age	bwt	visits						
<i< td=""><td>nt> <</td><td>int></td><td><int></int></td><td><chr></chr></td><td><int></int></td></i<>	nt> <	int>	<int></int>	<chr></chr>	<int></int>						
1	31	0	20	low	0						
2	76	0	20	low	2						
3	44	1	20	low	0						
4	68	1	17	low	2						
5	23	1	19	low	0						
6	45	1	17	low	0						
7	51	1	20	low	0						
8	49	0	18	low	0						
9	71	0	17	low	2						
10	83	0	17	low	0						
#	with	179	more i	"OWS							

```
87
88 ##export merged dataset as csv
89 write_csv(merged_data, "./lowbwt_merged.csv")
90
```

Next Steps

- We now have one data set that includes data on low and normal birthweight babies and includes data on # of visits!
- Next time, we will explore this data.
 - Descriptive Statistics
 - Visualizing Data
 - Basic Hypothesis Testing

Thank you!

Visit our BERD EDU website for additional resources: <u>http://irvinginstitute.columbia.edu/resources/biostat_educational_initiatives.html</u>

Data Wrangling Cheat Sheet on Dropbox !

Acknowledgements: Jeff Goldsmith (Data Science 1 notes: <u>http://p8105.com/</u>)